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Weighting of the Least-Squares and Steepest-Descents Methods in
the Initial Stages of the Crystal-Structure Determination
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Chemistry Department, The University, Glasgow W. 2, Scotland

(Received 15 March 1951 and in revised form 25 July 1952)

The behaviour of the methods of steepest descents and least squares in the initial stages of the
crystal-structure determination, when the differences between the assumed and the correct positions
of the atoms are large, depends on the choice of the weighting function. Various simple laws are
assumed for the weights, and the ‘efficiency of convergence is calculated for the case of known
signs of the observed F’s; only the power law is found to be suitable. It is shown that only for
weighting which corresponds to a large ‘artificial temperature factor’ is there a unique solution
for large displacements; the overlapping of atomic peaks is also discussed in detail. Analysis of
these two effects leads to the determination of the optimum value for the exponent in the power
law. Curves are drawn from which the corrections to be applied to the calculated displacements
can be obtained for one-, two-, and three-dimensional summations.

Introduction

The methods of least squares and steepest descents,
when applied to the refinement of crystal structures,
converge rapidly only when the assumed structure is
fairly near the correct one. When the differences
between the assumed and the correct positions of the
atoms are large, the application becomes increasingly
difficult, especially in a structure with many atoms.

Cochran (1948a) showed that the steepest-descents
and any similar method ceases to converge when the
corresponding Patterson peaks of the assumed and the
true structure no longer overlap. This difficulty can
be overcome by adjusting an artificial converging-
factor, which spreads the peaks out so that they do
overlap; the more effectively they overlap the better
the convergence will be. However, a limit to the dif-
ferences between the assumed and the correct atomic
positions is imposed by the presence of the neighbouring
atoms. The assumed atomic position will in general
refine towards the nearest correct position; we can,
therefore, take the upper limit of the errors in the
atomic positions as being one-half of the mean inter-
atomic distance in the structure (or projection) con-
sidered, i.e. 0-5-1-0 A. Within this limit, the errors in
the fractional coordinates can be considered small
(< 0-1 for a cell edge of 10 A), whereas the total
error in 2nHz/a, for instance, can be quite large if
H is large. The convergence of the refinement in this
case is of interest in the crystal-structure problem,
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and will be discussed below. Two conflicting require-
ments have to be considered: (a) large overlap of pairs
of actual and assumed peaks improves the convergence,
and (b) this also causes increased overlap of different
atomic peaks, thus making the solutions indefinite.

In order to apply successfully the least-squares and
steepest-descents methods where they are most needed,
i.e. in the initial stages of the determination of complex
crystal structures, it is necessary to build a detailed
theory of weighting and convergence covering all
aspects of the problem. This paper is limited to a
discussion of the relations between the efficiency of
convergence and the method of weighting for centric
structures, assuming that the signs of the structure
factors are known and the experimental errors neg-
ligible. The results must therefore be regarded as being
of restricted validity and as one aspect of the much
wider problem, which it is hoped to treat in further
papers. It is, however, pertinent to remark that, as
far as can be seen, the over-all efficiency of convergence
in the general case can be expressed as a product of
individual efficiencies (due to various causes), each of
which is substantially independent of the others. Thus
the present results, as far as they go, are useful in the
general problem.

1. Harmonic method of analysis

Qurashi (1949) has shown that the optimum rate of
convergence of successive approximations by steepest
descents to the final structure is obtained when the
n-dimensional R-contours are equi-axial; a con-
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sideration of the necessary conditions gives for the
approximate corrections
d 2
we (_%) ) W

) (3 we(p,— 5&) /(
&(%;) (ﬁ W(@o—@c) o, = o,
where @ is a suitable function of the atomic parameters,
x;. The case of ¢ =F is important, and all other
practical cases reduce to this with a suitable choice of
weight, W. As the above formula follows from the
least-squares solution by neglecting the small cross-
product terms, the results proved below for &(x;) will
in general hold for the least-squares solution. For
discussing the convergence, it is useful to analyze the
discrepancies, (¥,—F,), for harmonic components; in
this way, we can obtain exact expressions for the errors
in the atomic coordinates, and compare them with the
approximate corrections given by equation (1).

For a centro-symmetrical structure containing n
atoms per half unit cell, we have:

n
Fiy=22 fjcosv; = 2f 3 N;cos v,
where j=1 i

v = 2albafatkyfb+lzfe) , f = Zfifn, Nj=fif-

To a good approximation, the ratio f;/f = N; is in-
dependent of %, k,! in the ranges of sin 6/4 usually
encountered (c.f. Harker & Xasper, 1948). If the
values of the parameters assumed for an approximate
structure are %, Yis Zje> + - - 3 Nje» - - -, and the actual
values (in the correct structure) are z;, ¥, Zjos
Ny, ..., we can write:

R

vjo = Vj+0v;; and Nj, = N +0N;,
where
Ov; = 2n(hdw;a+kdy;[b+10z/c) .

We now obtain:

F,=2f3 N, cos v,
and i

F, =2f23 Ny, cos v,
= 2f 27,‘ (N e+ 0N;) (cos vj, cos Ov;—sin v, sin dv;) ,
whence !
(F,—F,) = 2f 3 N, {cos v;. (cos dv; — 1) —sin v;, sin dv;}
+2f %‘ 76N7- {cos v;, cos ov;—sin vy, sin dv;} . (2)

If we apply to this expression the principles of
harmonic analysis, the procedure is to multiply both
sides of (2) by cos v; or sin v, weighted by a suit-
ably chosen weight, and to sum over a sufficiently
large number of terms.

The multiplication by a cosine leads to expressions
useful for refinement of the scattering factors, mul-
tiplication by a sine to refinement of atomic co-
ordinates.

It is to be noted that:

3Fc/6x7 = —2f. 2ﬂ(h/a)Njc sin 'v,-c s
oF oN;, = 2f cos v .

It follows that multiplication of both sides of (3)
by the derivatives of F, is equivalent to the multiplica-
tion by sine or cosine.

In order to lessen the typographical effort we shall
use the following symbols:

WF,= ¢, WF,—F;)=A4¢p,

sin v, = §;, cos v;; = €4, Ny = N;,
sin dv; = s;, cos Ov; = ¢;, Wf=w,
2=2.

a3 _.
We have froin (1),

3)

Also, we can write (2) as
Ap = 2w I [N{C)(c;—1)—8js;}+0N{Cie;—8;s;}] . (3a)
7

Multiplying both sides of this expression by:

op|éx; = —4mw (h|a)N;S;
we obtain:

Ap dp|ox; = —8nw?(hja)N; 3 [N;{8;Ci(c;—1)—8:8;s;}

)
+6N7{Si07{)i—lgisjsj}] . (4(1)

Further we have
(0| 0x;)® = 1672 w?(h2[a?) N2S3 . (46)
It should be noted that no approximations were used
in deriving equation (4a); it represents an exact
equation,* which can, in principle, be solved for s;
and ¢;, and therefore for the unknowns dz;, 8y;, 6z;, 6N;.
We can effect a very considerable simplification by
summing these expressions over k%I, if the summation
is over a spherical annulus in reciprocal space and the
unit cell is nearly orthogonal (cf. Cruickshank, 1950).
Remembering that, when the number of terms is
large compared with the number of unknowns, and
there is not much overlapping of the atomic peaks,

S’I:Of = IS’,,,S] = Oioi = 0 fOI' ‘?: -‘;éj,
Sioi =0, Sz"s’i = CiOi = % >
we have

2 Apegp|ox; = dn X w?(hja)Nis; ,
3 3

3 (ep]ox)t = 8n2 3 u(h?/a?)N: . (5)
3 3

* On multiplication by 0p/ON; expressions are obtained
for ON;.
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From (5) and (3), we thus obtain
Swi(hla)s; 27ndx; X w?(hja)dx;s;
3 3

4n2 3 w?[(hja)dx)? ’ ©)
3

o) = 5 SR
3

with two similar expressions for £(y;) and &(z;).

These expressions represent the correction-vectorein
three-dimensional space and its relation to the atomic
displacement vector, defined by its three components
dz;, 0y;, 6z;. In practice, the latter is unknown and
it need not even be parallel to the vector ¢. The above
equations are therefore valuable for determining the
atomic positions of an approximate structure when the
structure is so far from the correct one that the linear
approximation of the steepest-descents formula does
not hold. The general displacement can be simplified
by suitable transformation of co-ordinates into a
displacement along the x axis only, without loss of
generality of the resulting conclusions. We have then
in the new co-ordinates system 6x,=§=0 0y;=0, dz;=
and we can write

2 w?(h/a) sin 27 (h/a)dx;
_ 3
(@) = S S :
3
3 w?(k/b) sin 27z (h/a)dx,
3
B(yl) = 27!2 wsz/bz 2
3

> w2(lje) sin 27 (hja)dx;
3
27 3 w?i?/c?
3

ez) =

From these equations it can be seen that the two
vectors are parallel when the summations are carried
out over a region of reciprocal space symmet.rical
about the origin. When this condition is fulfilled, in
the expresswns for e(y;) and &(z;) there will be terms
which cancel in pairs, so that

8(yi) =0, 8(2,') =0 )

and the two vectors are parallel, differing only in their

magnitudes. The ratio of these two vectors will be.

designated by #; it represents the ‘efficiency’ of the
modified steepest-descents formula (1) under the par-
ticular conditions.* In the following part of the paper
an attempt will be made to determine the behaviour
of 7. We have, in the transformed system,

2 3 w(hla)dx; sin 27 (hja)dx;

3
n = &(x;)[0x; = 42 3 b (W]a?) 02 . (7
3

In this expression, the only function that contains

* 7 is seen to be the efficiency of the linear approximation
in the practical least-squares method, and in a sense measures
its difference from the Fourier-synthesis method.
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k and 7 is the weight w. We can therefore sum over k
and ! first, and write

Suwt=1y,
.
Writing
27 (kja)dx; = u ,
we obtain
2 ypusinu
A
Yl %« "

If the summation proceeds by sufficiently small steps,
it can be replaced with sufficient approximation by
integration (e.g. with dx;/a = 0-1, the error in 7 is

~ 0:01), and we can therefore write:
+U o+ U

n* = S wu sin udu/Q\ yuldu .
+1y Cqu,

The values of % can be obtained as a series if we
substitute for the sine its development:

1 1
— 3 5_
sinu =u 3'u+ ud—
Then

"7= G3+ G

where
G, = S puPtidy / S ypuldu .

The solution depends on the particular value of the
weighting function and on the boundaries chosen. In
the following we shall discuss three typical forms of
weighting function, namely:

(1) y =d", (2) p = exp (—20/d),
(3) y = exp (—0?/d?),

where d = d;;;, ¢ = constant.

2. The one-dimensional case

The problem becomes particularly simple in the one
dimension as y = w? A wide variety of weighting
functions might be preferred for one reason or another.
We first assume that the weights obey a power law

= A", which is logical since the errors (|F,—F/f)
vary roughly as %; another reason for selecting this
function is its simplicity. We have then y ~ ™" and
therefore

S uP~m+ldy
3—n
G, = -
g u2"duy

* [J corresponds to the highest index used in the summation,
and u, to the lowest index. When the integrals are rapidly
convergent at the lower limit, %, can be replaced by zero
without appreciable error in 7.

r-!

p—nt? for n<3,
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and the efficiency

13—-n

mn) = 1=555— U+

13-—n
27 a—
3l5—n

5!17—n e

where the upper limits of integration are given by
U ~ 2n(H|a)dz;, where H is the highest Miller index
occurring in the summation.

In some cases, the series can be expressed in terms of
trigonometric or other functions. In one-dimension
and for n a whole number, we have (putting u, = 0),

7,(0) =~ -3.— (sin U—U cos U) for n =0,
2

m(l) =+ (1 cos U) for n =1,
Si(U

(2) = é- ) for n =2,

where Si(U) is the sine integral S ﬂu— du, which is

o
easily obtained numerically from the tables. It should

be noted that for » = 3, in order to avoid singularity
v
is to be replaced by the

o

o—%
depends on the lowest index h, used in the summatlon
Writing

at u = 0, the approximate S

U
exact S , where the lower limit, %, ~ 271 Oz, *

D = u,|/U =~ (he—3)/H ,

(where h, and H are the minimum and the maximum
index, respectively) we have

-1

= log @ 2 for n =23,

G, = ?lolg/g; for n=5 and
_ 5—n

G, — g :31 g-’» -U? for all other n.

Similar expressions are obtained for the higher co-
efficients of the expansion. In order to judge the effect
of @ on 7, the coefficient G4/U? is plotted in Fig. 1
as a function of » for @ — +0 and for @ = 1/20, the
latter value being likely to occur in practice (hy = 1,
H ~ 10).

It is to be seen that for » < 3, the influence of @
on Gy is small. For » = 3, G5 — 0 and therefore n — 1
as @ — +0; but by making » too large, only the low-
index reflexions would remain effective, and our
assumption that there is a sufficient number of terms

* For exact equivalence of the summations and integrals,

+§ ;.

Ox; n—2
uo_2n—(ho ﬁﬂm) , U~2n

compared with the number of unknown parameters
would be violated. The case of large n is equivalent
to the use of a large artificial temperature factor,

08 1

¢=1/20

¢—>+0

T T T } v v
-1 0 +1 2 3 4 S
n
Fig. 1. Curves showing the influence of @ ~ (h,—3)/H on the
coefficient of U? in the series expansion for 7).

which would also spread the atomic peaks, and there-
fore increase the overlapping (cf. § 3 below).
For n = 3, we obtain

1 sinu, sinU . .
1) = g a2 4 (D) ~Citu)}
where
z
Ci(x)=S 0% .

For small u,, Ci(x,) = log u,+y, where y = 0-5772 is
Euler’s constant, so that

. 1 sin U
m) = 1‘15;;6{1 i

= 1-1/(log @) x f(U) .

—— +Ci(U)—log U— y}

The curves for # against U are plotted in Fig. 2 for

n=3, &> +0

T

U=2ﬂ‘,i6x,'

Fig. 2. Curves for the one-dimensional efficiency of con-
vergence, 7;, as & function of U = 2n(H/a)dz.

integral values of n from 0 to 3. The exact shape of the
curves, especially for n < 3 is only slightly dependent
on the value of @; those in the figure have therefore
been calculated with @ = 0, except for » = 3, when
@ = 1/20 was assumed.
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An important result of the presence of the lower
limit, u,, in the integrals deserves notice: in all cases,
when U is sufficiently large,  ultimately becomes zero
and then oscillates about zero with decreasing ampli-
tude. If by R, we denote that value of u, = U®D
for which # first becomes zero, then R, gives the
maximum radius of convergence of the steepest-
descents (and least-squares) formula; approximate
expressions for R, are given below for a one-dimensional
summation with various values of n. (The results in
two and three dimensions are similar if » is replaced
by n—1 and n—2 respectively.)

n R,

0 4-50(1—1-5@3)

1 2nP(1—D)

2 1-9,4-20

3 2:1,4-1-502
..00 Y 1

It is apparent that for » <1, R oc @, while for
n = 2, R, is approximately independent of P, and
increases with increasing n to the limit s, which is
set by the condition that sin %, must not be negative.
With » =3, R, is about 70% of the theoretical
limit ; further increase in n will increase R, very slowly.
Much the same values are obtained for R, when the
original summations over hkl are considered instead
of the integrals, which approximate to them.

It should be remembered that U is unknown at the
beginning of the calculation, and it is necessary to re-
write the efficiency formulae in terms of ¢(z;) or better
in terms of U, = 2n(H|a)e(x;); they are shown
graphically in Fig. 3. It is apparent that all cases with
n < 2 are unsatisfactory; with n = 2, the correct
direction of shift is obtained for all practical U. but
multiple solutions occur in certain ranges of U, For
a unique solution, a satisfactory weighting-function
should have n = 3 (cf. curve for » = 3).

3. Overlapping atomic peaks in projection

As some overlapping usually occurs in one-, and two-
dimensional projections, it is important to consider

_] n=3, $—>+0
0-8 1
06{ n=1 n=3,#=1/20
7, 04
n=2
02 1

Uc=2n-%e(x)

Fig. 3. Curves for the efficiency of convergence, 7,, plotted
against the quantity 27(H/a)&(x), e(x) being obtained from
the modified steepest-descents formula (1). The multiplicity

of solutions for n < 3 is evident.
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the appropriate modifications to formula (1) and the
n-curves. Returning to the derivation of equation (6)
from the exact equation (4a), it is apparent that when

two atomic peaks overlap, the quantities S;S; and

C;C; for the two atoms ¢ and j will no longer be small,

but will have a value depending on the distance

(in projection) between the peaks and the extent of

the summation X . All other cross-product terms can
lor2

"be treated as before. Thus for the x coordinates of the

overlapping atoms in a two-dimensional projection,
we have, instead of (5),

17
S4p L = 4 ZuP(hle) Vs N N,288)
} (8a)
and
op\?
=(2Y_ sw s urpman:,
3:z:i 2

2

op\? 2
S|\=L) = 8223 w?(h?/a®) N3 . (8b)
2 \0%; 2

It is clear that the extra term in (8a) corresponds to

oF oF

the cross-product term X W2 —.— in the least-
2 s 0x;

squares solution, and could be evaluated as such if

s; and s; were small. Writing S,—S7 for the average of
8;8; over the reflexions in a small range df} of Bragg
angles, and putting

(S Niuwt(hla)s;)|(Z Niw?h?|a?) = 2mdz; x n;,
(% N2w? (h/a)s,-)/(% NEwh?a?) = 2mdw;x 1y,
we have from (8a) and (8b)
&(x;) = n:0%;+1;0%;
X % ( é N, N;w?(h|a)28:8;s;)/( % N, Nu(hla)s;),
&(x;) = n;02;4n,0%;
x %(2 N 0 (1)) 2B )| 3 NN s b))
Remembering that N;/N; = f;/f;, and putting
S N, Nuwi(hla)28S;s; 3 w(h|a)28S;s;
: S NNk a)s; == S (Rfa)s;

=&,

with a similar expression for «; we have

&(x;) = nidx;+ (filfi)o;-m0;
&(x;) = 02+ (filfj) s mide;

which give on solution and simplification,
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s(x, f, s(x,

D 1-0 2% Jmse), @

and symmetrically for dx;. This should be compared
with the corresponding formula for no overlap, namely

637';

0x; = &(x;)[n; .

It is seen that tlhe only new quantities involved are
o; and «;. Now

28,8;
= 2 sin 27 {(h/a)x;+ (k/b)y;} sin 27 {(h]a)x;+ (k[b)y;}
= cos 27 {(h/a) (2, — ;) + (ke [b) (y;—y;)}

—cos 27 {(h/a) (x;+x;)+ (k/b) (y;+v,)}
= cos 276/d—0 = cos 2nd/d ,

where ¢ is the distance in projection between the
atoms, and d is the mean inter-planar spacing in the
narrow annulus in reciprocal space over which the
averaging is carried out. We are justified in averaging
8;8; separately because in general there is no correla-
tion between dz;, dy;, etc., and §, and therefore be-
tween s; and S;S;. Thus

o; = (X w?(h[a) cos 27(/d) sin 27 (h/adz,+k[bdy;))/
2
(2 w2h/a sin 27 (hadz;+k[boy;))
2
~ (X w?(h?/a?) cos 2n6[d) [ (3 w2h?/a?) , (10)
2 2

since dx;, 0y;, etc., are usually smaller than §; this
approximation makes «; = &; = «.* For the one-
dimensional case, we have, on putting 27 (k/a)d=u(9),

> w?u?(d) cos u(9)
_ 1
* =TT S wRe0)
1
r®) ue)
~ (S wiy? cosudu) / (S w2u2du> . (11)
u(8) (%)
With w? = ™", we have for n = 2 and 3, respectively,
«(2) =~ sin U(3)/U(d) , (uo(0) being small)
U®) 20}
x(3) = S cosudu/g du
u®) % Jus0) ¥
—1+ 1 SU(")sinZu/2 ((P_uo I —%)‘
log @ 44(8) u/2 U~ H

The curves for « against U(d) shown in Fig. 4 are
somewhat similar to those of Fig. 2. It is seen from
the curves that formula (9) is useful for é > }d, since
for smaller values of § the denominator in (9) becomes
small and the probable error in determining dx; and
0x; separately becomes large, increasing roughly as

* In the other limiting case, when &% < ((dx;)%+(0y:)?),
ete., «; and «j— 1, so that only (dz;+(fj/f:)0x;) can be de-
termined with any accuracy.

(d/0)%. (This conclusion is generally true for solution
by least squares and allied methods.) For smaller
values of §, only the quantities (f;0x;+f;0x;), etc., can
be determined accurately.

10—

08 1

06 1

a = =
o4 - n=3, 6=1/20

02 1

00

—02

U@)=2rd/d

Fig. 4. Curves for the overlap coefficient, &, as a function
of U(d) = 2n(H/a)é.

Further, it is significant that w? = d8 is again a
limiting case, since « oscillates for » < 3, being
alternately positive and negative, while, for n > 3,
o is positive and decreasing, and tends to a positive
limit that increases rapidly with n; so that with
7 > 3 all atomic peaks will effectively overlap to a
considerable extent. For n = 3, « is positive and drops
rather rapidly for large U(d); moreover the value of
&(3) for U(d) > 4 is of the same order as the corres-
ponding absolute value of %(2), the curve for which is
identical with that for diffraction effects in a one-
dimensional Fourier synthesis (cf. James, 1948).
These considerations indicate the desirability of making
n < 3; combining this with the previously obtained
condition for a unique solution, namely n = 3, we obtain
n = 3. This then is the optimum value of n.

4. Exponential form of weighting function

We can now consider the exponential forms yp =
exp [—20/d] and o = exp[—0¢?/d?], where ¢ is a
constant. These are particularly interesting because
(1) the first form approximates closely to the variation
of f over a large range of sin 0/1 and atomic number,
while the second is often used as a converging factor,
and (2) these forms do not involve any trouble with
divergent integrals. In one dimension and with » =

exp [—20/d] = exp [-2(k/a)o], we have

v sinu
~ 2 -
n= (So wexp [ 7ox; u} u du)/

(SU wexp [‘ — “] d“) , (12)

which is evaluated numerically for the present purpose.
The expression with p = exp [—0¢?%/d?] is very similar.
Curves for # against U and against 27 (H/a)e(z) have
been drawn for these functions with two representative
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~ — —y=exp(-o/d’)

081 =exp(-20/d)
067 e
K 041
0-21
. ).\.J:/./.é/.——)o'_
U=2ﬂ'€"6X/
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— — —y=exp(-0/d)
y=exp(=20/9)

}0'=26X;
—
V=2t e(x)
(b)

Fig. 5. Efficiency of convergence curves with exponential weighting-functions. The behaviour of the curves with ¢
greater and less than the critical value, ~ 30z;, is strikingly different.

values of ¢, namely 2dz;, 40x; (Figs. 5(a) and 5(b)).
The curves show the same general characteristics as
those for the power law, the critical value of ¢ being
approximately 3dz;; unique solutions are obtained
when ¢ > 30x; and multiple solutions occur when
o < 3dx;. The unfortunate feature is that the critical
value of ¢ is a multiple of the unknown dz;; that this
must be so follows immediately from equation (12).
Thus if we use these exponential forms, we cannot
weight the reflexions properly until we know dz;,
and therefore the actual atomic coordinates! Further,
the exponential law has the disadvantage that unique
n-U curves, independent of dx; etc., cannot be
drawn.

We are therefore left with the power law as the most
satisfactory form of weighting function so far con-
sidered.

5. The two-dimensional case

In the two-dimensional case,
p=2uw?.
k

If the summation contains enough terms, we can to a
sufficient degree of approximation again replace the
sum by an integral and write

+E
v = S (w(hk))dk .
K

It is reasonable to assume that the weight is a function
of the distance of the reciprocal point (k%) from the
origin in reciprocal space. Calling this distance r,
we have

r? = (hja)*+(k[b)? == (1/d)* .

If a power law is valid for the weight, w? = ™, so
that

K
e S (h2 a2+ 12 fb) -3k |
-K

The value of ¢ depends on the particular shape of
the region of integration. Let us assume that the

region of a plane over which the integration is taking
place is bounded by a circle round the origin and of
a radius R, so that the limits of the integral are

K = £b/{B2—(hja)} .

The efficiency integral is now more difficult to solve,
and no general method of solution for the power series
could be found. However, from a solution of several
special instances, it appears that the series has the
following form

134—n
p— —_— 2
) =131 U
13.54—n 13.5.74—-n
- 4 _ T " I76
t512.68 2" TI46810-n" T
valid for n < 4. In this series, U = 2nHdz;ja =

2nRéx;, R being the radius of the region over which
the summation takes place. For » =4, in order to
avoid singularity at 4 = 0, the integration should be
split as in the one-dimensional case. The results are
similar to those in three dimensions and therefore they
will be discussed along with the three-dimensional case
below.

6. The three-dimensional case

In three dimensions,
b= 3 3 (wlhk])".
We introduce again the distance from the origin as
7% = (hla)*+(k[b)*+(lfe)® = (1/d)?,
and another variable g, defined by

0% = (k[b)2+(lfc)?,
and obtain

Y ocS S widp.odf .
o Y0

With U as defined previously, the general solution is
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Fig. 6. Curves for 7, the efficiency of convergence for a three-dimensional summation. The curve for
the optimum value (5) of n is very close to the corresponding curve for #,.
g (UE"—y2=7) ¥y 35 -1 sions and » = 5 in three dimensions. (This increase
G, =: __36-n) (n+2), of n with the number of dimensions can be readily

S (U2_”—-u2“") uldu (p+2)(4+p—n)

and we have

_ 13(B-n)., 13((6-2)_,
) =l-giz U 5T e Y

In three dimensions, it is again easy to evaluate
ns(n) for integral values of », and in the most im-
portant range we have

75(2) = 5 (8§(0) —sin )
6 .
75(3) = ViE (U—sin U)

3 . .
75(4) = W(U cos U—sin U+ U2Si(U)) n =4,

1
and  75(5) = m(3)_3Tog@—+1
sin U_

X (171(3)—%2 (—ﬁ— cos U>)+0(§ng3—¢) n=>5.

For n = 5, the integrations are split as in the one-
dimensional case. As n increases, the efficiency in-
creasingly depends on the lower limit of the summa-
tion, and therefore on @. Since the formulae are very
similar to the one-dimensional ones, they need not be
discussed in detail. Certain important features of the

two-, and three-dimensional cases, however, deserve
notice (cf. Figs. 6(z) and (b), in which curves for 7;(n)
with n = 2 to » = 5 are shown).

When the results calculated for different number of
dimensions are represented graphically, in all cases
when 7 is small, the efficiency 7 is an oscillating func-
tion. As =n increases, the oscillations decrease in
amplitude until they are completely damped and the
displacement dz; becomes a single-valued function of
&(x;). If a single-valued solution is desired, we should
choose 7 =8 in one dimension, » = 4 in two dimen-

understood; it compensates for the increased relative
number of high-order reflexions entering into the
summations.) Combining this result with considera-
tions of overlapping peaks, as for the one-dimensional
case, we obtain » = 3, 4 and 5, respectively, as the
optimum values of the exponent.

7. Practical application to the modified steepest-
descents calculation

The efficiency formulae derived in the preceding section
can be used in practice either to find corrections to
the values of ¢ when a weighting function of a given
n is used, or to restrict the limits of summation when
it is found that the inclusion of high-index terms is
detrimental to the convergence.

To simplify previous discussion, the vector & was
taken parallel to the x axis. Now it is necessary to
transform our results back to general co-ordinates and
the efficiency is to be calculated on the basis of the
absolute length

lel = +V{e(@:)2+e(y:)? +e(2)% -

After rewriting the efficiency formulae, it is possible
to prepare graphs or tables of #(27R|¢|), or preferably
its reciprocal, as functions of 2nR|e[. The corrected
atomic shifts can then be obtained from the equations

bx; = e(x))[n ,
6?/1; = B(yz)/n ’
bz =e(z)[n

the same value of # being used for all coordinates of
one atom.

It is to be noted that, although curves for # are
given only for the one- and three-dimensional cases,
corresponding curves are close enough in the practically
useful range to enable the curves for the two-dimen-
sional case to be got by interpolation.

Also, it can be shown that the above results for %
hold substantially unaltered when the lattice is non-
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orthogonal, provided that e(z), &(y), &(z), are now re-
placed by ¢, &,, &5, obtained by solution of the fol-
lowing equations

&(x) = &, +¢&, cos y+egcos B,
&(y) = &; cos y+e,+g53 cos o,
£(z) = & cos B+eg, cos x+teg.,

o, B, v, being the inter-axial angles (cf. Booth,
1946a, b), with corresponding equations for the two-
dimensional case.

8. Conclusions

(a) It has been shown that the efficiency of con-
vergence of the modified steepest-descents and the
least-squares methods depends on the form of weight-
ing function adopted. From three possible forms of
weighting function discussed, only functions of a type

w? =d", ie. W2 = (1/f3d",

where d is the inter-planar spacing for the reflexion
concerned, are found to be effective in giving single-
valued solutions. The optimum value of # is found to
be 3, 4 and 5, for one-, two- and three-dimensional
summations, respectively. When # is smaller than the
optimum value, the efficiency oscillates and there are
multiple solutions in certain ranges of the shifts, e.
However, the solution is always unique when » is
greater than or equal to the optimum value. This
apparently corresponds to the spreading of the atomic
peaks of the Cochran theory so that they extend over
the whole unit cell, as is shown by considering in
detail the overlap of atomic peaks. For n greater than
the optimum value, the overlap between distant atoms
becomes excessive.

(b) The value of 7 obtained from the appropriate
curve can be used to correct the calculated ¢’s and
thus speed up convergence. Before the results can be
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confidently applied in practice, other important effects
such as uncertainty of signs, experimental errors, etc.,
need to be incorporated into the theory. It is hoped
to do this in a later paper.

(c) Finally, it is pertinent to emphasize that the
particular efficiency of convergence considered above
is peculiar to the least-squares and steepest-descents
methods, and does not have a counterpart in the
Fourier-synthesis method; this is easily seen by noting
that, under the conditions stipulated, namely,
knowledge of the signs of the observed F’s, =1
for the Fourier synthesis, apart from diffraction
effects due to series termination. Cochran (1948b)
and Cruickshank (1950) show that the least-squares
solution is identical with that given by a modified
Fourier-synthesis, but this conclusion refers to the
ultimate solution and nof to the rate of convergence
of successive approximations. Cruickshank, in fact,
notes that in a typical case the rates are significantly
different for ¢ > 0-10 A. The special significance of
the present calculations for # is that, after this % has
been corrected for, the least-squares and Fourier-
synthesis methods become comparable (or approxi-
mately so) in so far as concerns the effect of incorrect
signs, etc., on the over-all efficiency of convergence.

We are indebted to Dr H. Lipson, Dr I. G. Edmunds
and Prof. J. M. Robertson for their interest. Part of
the above work was made possible by a grant from the
Government of Pakistan.
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