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The behaviour of the methods of steepest descents and least squares in the initiM stages of the 
crystal-structure determination, when the differences between the assumed and the correct positions 
of the atoms are large, depends on the choice of the weighting function. Various simple laws are 
assumed for the weights, and the 'efficiency of convergence' is calculated for the case of known 
signs of the observed F's;  only the power law is found to be suitable. I t  is shown that only for 
weighting which corresponds to a large 'artificial temperature factor' is there a unique solution 
for large displacements; the overlapping of atomic peaks is also discussed in detail. Analysis of 
these two effects leads to the determination of the optimum value for the exponent in the power 
law. Curves are drawn from which the corrections to be applied to the calculated displacements 
can be obtained for one-, two-, and three-dimensional summations. 

Introduction 

The methods of least squares and steepest descents, 
when applied to the refinement of crystal structures, 
converge rapidly only when the assumed structure is 
fairly near the correct one. When the differences 
between the assumed and the correct positions of the 
atoms are large, the application becomes increasingly 
difficult, especially in a structure with many atoms. 

Cochran (1948a) showed that  the steepest-descents 
and any similar method ceases to converge when the 
corresponding Patterson peaks of the assumed and the 
true structure no longer overlap. This difficulty can 
be overcome by adjusting an artificial converging- 
factor, which spreads the peaks out so that  they do 
overlap; the more effectively they overlap the better 
the convergence will be. However, a limit to the dif- 
ferences between the assumed and the correct atomic 
positions is imposed by the presence of the neighbouring 
atoms. The assumed atomic position will in general 
refine towards the nearest correct position; we can, 
therefore, take the upper limit of the errors in the 
atomic positions as being one-half of the mean inter- 
atomic distance in the structure (or projection) con- 
sidered, i.e. 0.5-1.0/~. Within this limit, the errors in 
the fractional coordinates can be considered small 
(<  0.1 for a cell edge of 10 J~), whereas the total 
error in 2xeHx/a, for instance, can be quite large if 
H is large. The convergence of the refinement in this 
case is of interest in the crystal-structure problem, 
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and will be discussed below. Two conflicting require- 
ments have to be considered: (a) large overlap of pairs 
of actual and assumed peaks improves the convergence, 
and (b) this also causes increased overlap of different 
atomic peaks, thus making the solutions indefinite. 

In order to apply successfully the least-squares and 
steepest-descents methods where they are most needed, 
i.e. in the initial stages of the determination of complex 
crystal structures, it is necessary to build a detailed 
theory of weighting and convergence covering all 
aspects of the problem. This paper is limited to a 
discussion of the relations between the efficiency of 
convergence and the method of weighting for centric 
structures, assuming that  the signs of the structure 
factors are known and the experimental errors neg- 
ligible. The results must therefore be regarded as being 
of restricted validity and as one aspect of the much 
wider problem, which it is hoped to treat in further 
papers. I t  is, however, pertinent to remark that, as 
far as can be seen, the over-all efficiency of convergence 
in the general case can be expressed as a product of 
individual efficiencies (due to various causes), each of 
which is substantially independent of the others. Thus 
the present results, as far as they go, are useful in the 
general problem. 

1. Harmonic  method  of analysis  

Qurashi (1949) has shown that  the optimum rate of 
convergence of successive approximations by steepest 
descents to the final structure is obtained when the 
n-dimensional R-contours are equi-axial; a con- 
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sideration of the necessary conditions gives for the 
approximate corrections 

X j / / \ h k  t \ O X j /  / ' 

where ~ is a suitable function of the atomic parameters, 
x i. The case o f ~ - - F  is important,  and all other 
practical cases reduce to this with a suitable choice of 
weight, W. As the above formula follows from the 
least-squares solution by neglecting the small cross- 
product terms, the results proved below for e(x~) will 
in general hold for the least-squares solution. For 
discussing the convergence, it is useful to analyze the 
discrepancies, ( F o - F ¢ ) ,  for harmonic components; in 
this way, we can obtain exact expressions for the errors 
in the atomic coordinates, and compare them with the 
approximate corrections given by equation (1). 

For a centro-symmetrical structure containing n 
atoms per half unit cell, we have" 

~ ' ~  = 2 2:f~ cos v~ = 2f2." ~ .  cos v~, 
where ~=~ i 

vj = 2:~(hx~/a+ky~/b+lz~/c) , f = 2 f~/n, ~ = f~/ f  . 

To a good approximation, the ratio f~/ f  = N~ is in- 
dependent of h, k, 1 in the ranges of sin 0/~ usually 
encountered (c.f. Harker  & Kasper, 1948). If the 
values of the parameters assumed for an approximate 
structure are xic, Yic, Zic . . . .  ; N#, . . . , .  and the actual 
values (in the correct structure) are Xio, Yyo, Z~o . . . .  ; 
N~o, . . . ,  we can write: 

V~o = v~+(~v~; and Nio = N#+(~N~ , 
where 

.Sv1 = 2~(h~x~/a + k~y~/b + h~z~/c) . 

We now obtain: 

~o = 2 f ~  N# cos V~c 
and 

F o = 2ffl_," N~. o cos V~o 
i 

= 2 f ~  (N~-¢+(~i) (cos v~ cos 5vi -s in  vie sin ~v~), 

whence 

( F o - F ~ )  = 2f~" N~ {cos v~ (cos (~v i - 1) - s in  vie sin ~vi} 

+ 2 f 2  ON i {cos vi¢ cos 6v~-sin v~ sin ~v~}. (2) 

If we apply to this expression the principles of 
harmonic analysis, the procedure is to multiply both 
sides of (2) by cos v~¢ or sin v~¢, weighted by a suit- 
ably chosen weight, and to sum over a sufficiently 
large number of terms. 

The multiplication by a cosine leads to expressions 
useful for refinement of the scattering factors, mul- 
tiplication by a sine to refinement of atomic co- 
ordinates. 

I t  i s  to be noted tha t :  

aF¢/ ax~ --- - 2 f  .2r~(h/a)Ni¢ sin v~ , 

~Vol~2V~o = 2f  cos v~o. 

I t  follows tha t  multiplication of both sides of (3) 
by the derivatives of F¢ is equivalent to the multiplica- 
tion by sine or cosine. 

In  order to lessen the typographical effort we shall 
use the following symbols: 

W ~ c  = qo, W ( F o - F ~ )  = A ~  , 

sin v~o = S~, cos v~ = ~ ,  ~V~ _ N~, 
s i n ~ v ~ = %  c o s S v ~ = %  W f = w ,  
2 = 2 : .  
hkl 3 

We have frotn (1), 

Z A~ ocp 
_ ~ Ox~ (3) E(Xj) 

"~a \ Oxj/ 

Also, we can write (2) as 

= 2 w 2  . (3a) 
J 

Multiplying both sides of this expression by:  

~ /  ~x i = - 4 r ~ w  ( h / a ) N i S  i 
we obtain: 

A~o 0~/0x i = - 8 ~ w  2 (h/a)N~ v [Ni{S~C~(c i _  I)-SiS~j} 
J 

(4a) 
Further  we have 

(~q~/~xi)~= 1 6 ~ w ~ ( M / a ~ ) N ~ .  (4b) 

I t  should be noted tha t  no approximations were used 
in deriving equation (4a); it represents an exact 
equation,* which can, in principle, be solved for si 
and ci, and therefore for the unknowns (~xi, (~y~, 5zi, (~Ne 
We can effect a very considerable simplification by  
summing these expressions over hkl,  if the summation 
is over a spherical annulus in reciprocal space and the 
unit cell is nearly orthogonal (cf. Cruickshank, 1950). 
Remembering that ,  when the number of terms is 
large compared with the number of unknowns, and 
there is not much overlapping of the atomic peaks, 

we have 

& ~  = O, & S i  = OiCi = ½, 

. ~  ( ~q~/ Oxi)" = 8~ 2 .Z  w2(h~/a~)2V~ . 
3 3 

(5) 

* On multiplication by ~/0N~ ~xpressions are obtained 
for ~Ni. 
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From (5) and (3), we thus  obta in  

.~  w 2 (h/a)si 2z~xi.~, w 2 (h/a) (~xis~ 
3 3 

e(xi) = 2z~ 22 w~h2/a 2 = 4z~ ~, wg.[(h/a)~xi] 2 , (6) 
3 3 

with two similar expressions for e(yi) and  e(zi). 
These expressions represent  the  correction-vector e in 

three-dimensional  space and  its relat ion to the  atomic 
displacement  vector, defined by  its three components  
(~xi, (~y~, (~zi. In  practice,  the  la t te r  is unknown and  
it  need not  even be parallel  to the  vector  e. The above 
equations are therefore valuable  for determining the  
atomic positions of an approx imate  s t ruc ture  when the  
s t ruc ture  is so far  f rom the  correct one t h a t  the  linear 
approx imat ion  of the  steepest-descents formula  does 
not  hold. The general  displacement  can be simplified 
by  suitable t r ans fo rmat ion  of co-ordinates into a 
displacement  along the  x axis only, wi thout  loss of 
general i ty  of the  result ing conclusions. We have  then  
in the  new co-ordinates sys tem (~x~.O, (~y~=O, (~z~=O, 
and  we can write  

.~, we(h/a) sin 2z~(h/a)Sx i 
~ ( x ~ )  = ~ 

2~ ~, w~h~/a ~ 
3 

.~, w~(k/b ) sin 2z~(h/a)(~x i 
~(y~) = ~ 

2~.X, w~ k~/b ~' 

..~ w~(1/c) sin 2z(h/a)(~x i 

~ ( z i )  = ~ 2~ 2.," w2l~/c ~ 
3 

From these equat ions i t  can be seen t h a t  the  two 
vectors  are parallel  when the  summat ions  are carried 
out  over a region of reciprocal space symmetr ica l  
about  the  origin. When  this condition is fulfilled, in 
the  expressions for e(yi) and e(zi) there will be te rms 
which cancel in pairs,  so t h a t  

~(Yi) = O, ~(Zi) = 0 ,  

and  the two vectors are parallel,  differing only in their  
magni tudes .  The ra t io  of these two vectors will b e  
designated by  7;  it  represents the  'efficiency' of the  
modified steepest-descents formula  (1) under  the  par- 
t icular  conditions.* I n  the  following p a r t  of the  paper  
an  a t t e m p t  will be made  to determine the  behaviour  
of U. We have,  in the  t r ans fo rmed  system, 

2z~ .~  w e (h/a) (Sxi sin 2~ (h/a) (~xi 

= ~(xi)/(~x~ = 3 4~ 9".~ w~(hg/a2)~x~ . (7) 
3 

In  this  expression, the  only funct ion t h a t  contains 

* ~ is seen to be the efficiency of the linear approximation 
in the practical least-squares method, and in a sense measures 
its difference from the Fourier-synthesis method. 
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k and  1 is the  weight w. We can therefore sum over b 
and  l first,  and write 

~ : w  2 = ~ .  
k l  

Wri t ing  
2~ (h/a) (~x~ = u ,  

we obta in  
~v ym sin u 

h 
r / =  2 2 ~ , ~  " 

h 

I f  the  summat ion  proceeds by  sufficiently small  steps, 
i t  can be replaced with  sufficient approx imat ion  by  
in tegra t ion (e.g. with (~xi/a = 0.1, the  error in U is 

0.01), and  we can therefore wri te:  

l 7"  = 2 ym sin u d u  2 v2u2du. 
+ U  o • +U o 

The values of U can be obtained as a series if we 
subst i tu te  for the  sine its development :  

1 1 
sin u = u - ~ . u 3  + ~  u 5 -  . . . .  

Then 

where 

1 1 
U =  1 - ~ . G 3 + ~ . G s - ' " ,  

Gp = f v2up+ldu/ l  v2u2du . 

The solution depends on the  par t icu lar  value of the  
weighting funct ion and  on the  boundaries  chosen. In  
the  following we shall discuss three typica l  forms of 
weighting function,  name ly :  

(1) ~ = d n, (2) ~ = exp ( -2~ /d ) ,  

(3) ~ = exp ( -ag /d2) ,  

where d = dhk l, a --= constant .  

2. T h e  o n e - d i m e n s i o n a l  c a s e  

The problem becomes par t i cu la r ly  simple in the  one 
dimension as v 2 = w 2. A wide va r i e ty  of weighting 
functions might  be preferred for one reason or another.  
We first  assume t h a t  the  weights obey a power law 
w 2 = h -~, which is logical since the  errors (]Fo-Fc[/f)  
v a r y  roughly  as h; another  reason for selecting this 
funct ion is its simplicity. We have  then  y~ ~--u -~ and 
therefore 

f up-n+~du 3 - n  
@ =  ~ p - n + 2  UP-1 for n < 3 ,  

) u2-ndu 

* U corresponds to the highest index used in the summation, 
and u 0 to the lowest index. When the integrals are rapidly 
convergent at the lower limit, u 0 can be replaced by zero 
without appreciable error in ~. 
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and the efficiency 

7]1(n ) = 1 
1 3 - n  

3 ! 5 - n  

1 3 - n u 4  - u~+~.~-__~ . . . ,  

where the upper limits of integration are given by  
U ~ 2~ (H/a)Ox~, where H is the highest Miller index 
occurring in the summation. 

In  some cases, the series can be expressed in terms of 
trigonometric or other functions. In  one-dimension 
and for n a whole number, we have (putting u 0 = 0), 

3 (sin U -  U cos U) for n = 0 ,  n ~ ( 0 ) _ ~  

2 
~1(1) _~ ~ (1 -cos  U) for n = 1, 

Si(U) for n = 2 ,  n~(2) - - - - -~  

where Si(U) is the sine integral I ~sin U du, which is 
do ~t 

easily obtained numerically from the tables. I t  should 
be noted tha t  for n > 3, in order to avoid singularity 

at  u = O, the approximate is to be replaced by  the 
o 

exact , where the lower limit, u 0 ~'~ 2~ h°-½ ~x~,* 
u0 a 

depends on the lowest index h0 used in the summation. 
Writing 

q5 = uo/U ~ (ho -½) /H  , 

(where h 0 and H are the minimum and the maximum 
index, respectively) we have 

~b~_l 
G 3 - -  - -  V 2 for n = 3, 

2 log ¢ 

G3 _ 2 log_______~ U2 for n = 5 and 
1 - 1 / ¢  2 

( 3 -  n) 1 - ~5 -n  
G 3 -  (5-n-----)1-~b S-n U2 for all other n .  

Similar expressions are obtained for the higher co- 
efficients of the expansion. In  order to judge the effect 
of ~b on ~7, the coefficient Ga/U 2 is plotted in Fig. 1 
as a function of n for ¢ -+ +0  and for ¢ = 1/20, the 

latter value being likely to occur in practice (h 0 = 1, 
H ___ 10). 

I t  is to be seen tha t  for n < 3, the influence of ~b 
on G 3 is small. :For n _~ 3, G 3 --> 0 and therefore ~ -~ 1 
as ~b -> +0 ;  but  by making n too large, only the low- 
index reflexions would remain effective, and our 
assumption tha t  there is a sufficient number of terms 

* F o r  e x a c t  e q u i v a l e n c e  of t h e  s u m m a t i o n s  a n d  in teg ra l s ,  

u o ~ 2~ ~xi ( h o _ ~ + ~  2~o_1) U ~-- 2~ (~xi. 
_ _  I , H+½ 
65 a 

compared with the number of unknown parameters  
would be violated. The case of large n is equivalent 
to the use of a large artificial temperature factor, 

0"8 

0"6 

G3 0"4 
U 2 

0"2 
q,---> + 0 ~ffiV20 

-1 o +1 2 3 4 5 
n 

Fig .  1. Curves  s h o w i n g  t h e  i n f luence  of  q~ '~' (h o -  ½)/H o n  t h e  
coe f f i c i en t  of  U 9 in  t h e  ser ies  e x p a n s i o n  f o r  ~h- 

which would also spread the atomic peaks, and there- 
fore increase the overlapping (el. § 3 below). 

For  n = 3, we obtain 

n1(3) = 
where 

1 / s inu°  s i n U  } 
log ~ t ~0 ~ +ci(u)-ci(u0) , 

Ci(x) = e i x cos u d u .  

doo 

For small u0, Ci(u0) = log Uo+y, where 7 = 0.5772 is 
Euler 's constant, so tha t  

1 { s i n U  } 
~h(3) - 1 - ~  1 - ~  + C i ( U ) - l o g  U - y  

= 1 - 1 / ( l o g C ) ) x f ( U ) .  

The curves for r /against  U are plotted in :Fig. 2 for 

0"8' 

0"6" 

0"4" 

0.2' 

n=3,  (~--) +0  

U = 2 ~  H dx~ 

Fig .  2. Cu rves  fo r  t h e  o n e - d i m e n s i o n a l  e f f i c i ency  of  con-  
v e r g e n c e ,  71, as  a f u n c t i o n  of U = 2r~(H/a)~x. 

integral values of n from 0 to 3. The exact shape of the 
curves, especially for n < 3 is only slightly dependent 
on the value of ~ ;  those in the figure have therefore 
been calculated with ~ = 0, except for n = 3, when 
~b = 1/20 was assumed. 
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An important  result of the presence of the lower 
limit, u 0, in the integrals deserves notice: in all cases, 
when U is sufficiently large, ~ ul t imately becomes zero 
and then oscillates about zero with decreasing ampli- 
tude. If by  R z we denote tha t  value of u o =  U ¢  
for which ~ first becomes zero, then R z gives the 
maximum radius of convergence of the steepest- 
descents (and least-squares) formula; approximate 
expressions for R z are given below for a one-dimensional 
summation with various values of n. (The results in 
two and three dimensions are similar if n is replaced 
by n - 1  a n d  n - 2  respectively.) 

n R~ 

o 4•5~(1-- 1"5~5 a ) 
1 2~@(1--~) 
2 1"9a-I-2~ 
3 2. l~ :E 1.5~ ~ 

• . • C O  . . . ~  

I t  is apparent  tha t  for n < 1, R z oc ~ ,  while for 
n _~ 2, R z is approximately independent of ~b, and 
increases with increasing n to the limit g, which is 
set by the condition tha t  sin u 0 must  not  be negative. 
With  n = 3, R~ is about 70% of the theoretical 
limit; further increase in n will increase R~ very slowly. 
Much the same values are obtained for R z when the 
original summations over hkl are considered instead 
of the integrals, which approximate to them. 

I t  should be remembered tha t  U is unknown at  the 
beginning of the calculation, and it  is necessary to re- 
write the efficiency formulae in terms of e(x~) or better  
in terms of Uc = 2ze(H/a)e(xi); they  are shown 
graphically in Fig. 3. I t  is apparent  tha t  all cases with 
n ~_ 2 are unsatisfactory; with n = 2, the correct 
direction of shift is obtained for all practical U. but  
multiple solutions occur in certain ranges of U¢. For  
a unique solution, a satisfactory weighting-function 
should have n > 3 (cf. curve for n = 3). 

3. O v e r l a p p i n g  a t o m i c  p e a k s  in  p r o j e c t i o n  

As some overlapping usually occurs in one-, and two- 
dimensional projections, i t  is important  to consider 

n=3, ~--> + 0 

060 
0"4 = 

0"2 ~ ,  t n--2 , 

~ ' 

U~=2= H elx) 
Fig. 3. Curves  for the  eff iciency of convergence,  ~h, p lo t t ed  

agains t  the  q u a n t i t y  2 r ~ ( H / a ) e ( x ) ,  e ( x )  being ob ta ined  f rom 
the  modif ied  s~eepest-descents  fo rmula  (1). The  mul t ip l i c i ty  
of solut ions  for n < 3 is ev ident .  

the appropriate modifications to formula (1) and the 
~-curves. Returning to the derivation of equation (6) 
from the exact equation (4a), it is apparent  tha t  when 

two atomic peaks overlap, the quantities "SiS ~ and 
CiC~ for the two atoms i and j will no longer be small, 
but  will have a value depending on the distance 
(in projection) between the peaks and the extent  of 
the summation 27. All other cross-product terms can 

1 ors 

be treated as before. Thus for the x coordinates of the 
overlapping atoms in a two-dimensional projection, 
we have, instead of (5), 

.~ /lq~ Oq9 = 4:r 2 w2(h/a) ( ~ s i +  NiNi2SiSisi) , 1 
Oxi ~ / (8a) 

Aq~ Oq~ = 4.~ ~ w2(h/a) (NiNi2SiSisi+ N~si) , ox~ 

and 

~ \ Oxd 
= 8~9~v, w~(h~/a2)N~, 

2 

- -(Oq~12= 8n~,,~w~(h~/ae)_N~. (8b) 

I t  is clear tha t  the extra  term in (8a) corresponds to 
0F OF 

the cross-product term 27 W ~ - - - - -  in the least- 
2 Oxi Ox i 

squares solution, and could be evaluated as such if 

s i and s i were small• Writ ing SiS i for the average of 
SiS i over the reflexions in a small range dO of Bragg 
angles, and put t ing  

(.~, .N~w~(h/a)¢)/(2 N~w~h~/a ~) = 2=6x, x V,, 
2 2 

( 2  N~.w~(h/a)si)/(2 N~w2h~/a ~) = 2xe6xi× ~]i, 
2 2 

we have from (8a) and (8b) 

e(x~) = Vi~x~ +Vj6xj 

× ~ ( ~  N~NJw2(h/a)2S~SJsJ)/( 2~ N~Nw~(h/a)@' 

N~ (2~ NiNiw ~" (h/a) 2 SiSjsi)/(2 NiNjw ~(h/a) si) . 

Remembering tha t  2Vi/N j = fdfi, and put t ing 

27 NiNjwg(h/a)2SiSjsi .~, w2(h]a)2SiSisi 
2 2 

---- OQ,  
.~, NiNiwg(h/a)si .~, w2(h/a)si 

2 2 

with a similar expression for ~j, we have 

e(xi) = 7]i~xi+ (f1/f i)oq. ~]i~xj , 
e(xj) = Vj~xj+ (fi/f j)~. W~xi , 

which give on solution and simplification, 
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e(xi)~7, -(1 fie(x~)'~/'" 6x~ 
= (9) 

and symmetrically for 6x~.. This should be compared 
with the corresponding formula for no overlap, namely 

6xi  = ~(x~)l~7~. 

I t  is seen tlin~ ~tie only new quantities involved are 
cq and a i. ~ o w  

2~,~ 
= 2 sin 2xt {(h/a)xi+ (k/b)yi} sin 2~{(h/a)xi+(k/b)yj} 

= cos 2~{(h/a)(xi-xj)+(k/b)(y~-y~)} 

- c o s  2~{(h/a)(xi+xj)+(k/b)(yi+y~) } 
= cos 2~6/d-0 = cos 2~6/d, 

where 6 is the distance in projection between the 
atoms, and d is the mean inter-planar spacing in the 
narrow annulus in reciprocal space over which the 
averaging is carried out. We are justified in averaging 
SiSj separately because in general there is no correla- 
tion between 6xi, 6y~, etc., and 6, and therefore be- 
tween si and SiS 1. Thus 

a i = ( . ~ w 2 ( h / a )  cos 2~(6/d)  s in 2 ~ r ( h / a 6 x i + k / b 6 y i ) ) /  
2 

(~" w2h/a sin 2g(h/a6xi+ k/b6yi)) 
9. 

(.~, w2(h2/a  2) cos 2~r6/d) / (.~ w2h2/a2) , (10) 
2 2 

since 6xi, 6yi, etc., are usually smaller than  6; this 
approximation makes ai = aj = a.* For the one- 
dimensional case, we have, on putt ing 2~(h/a)6=u(6), 

2 W 2 U 2 ( 6 )  COS U(6) 
1 

~_~" W2U2 (6) 
1 

(I ~:(6)w2u ~ cosudu)/(Iv(~)w2u2du) . (11) 
\.)Uo(a) /\¢Uo(a) 

With w 2 = h -~, we have for n = 2 and 3, respectively, 

a(2) _~ sin U(6)/U(6), (u0(6) being small) 

~(3) = t~('~) c°S U d u /  I v(~) du 
~o(~) u / J~o(~)-u-- 

The curves for c~ against U(6) shown in Fig. 4 are 
somewhat similar to those of Fig. 2. I t  is seen from 
the curves tha t  formula (9) is useful for 6 > ¼d, since 
for smaller values of 6 the denominator in (9) becomes 
small and the probable error in determining 6xi and 
6x i separately becomes large, increasing roughly as 

* In the other limiting case, when 62<  ((6xi)2-4-(6yi)2), 
etc., ai and a j -+  1, so that  only (6xi-t-.(fi]fi)6xj) can be de- 
termined with any accuracy. 

(d/6)L (This conclusion is generally true for solution 
by  least squares and allied methods.) For  smaller 
values of 6, only the quantities (fi6xi+fj6x~), etc., can 
be determined accurately. 

1"0~ 

0"8 

0"6 
{X 

0"4 

0"2 ' ~  

0:0 ~ 

- -  0"2 
U(~)= 2=~/d 

Fig. 4. Curves for the overlap coefficient, a, as a function 
of U(6) = 2z(H/a)6.  

Further,  i t  is significant tha t  w 2 =  d 3 is again a 
limiting case, since c~ oscillates for n < 3, being 
alternately positive and negative, while, for n > 3, 
c~ is positive and decreasing, and tends to a positive 
limit tha t  increases rapidly with n;  so tha t  with 
n > 3 all atomic peaks will effectively overlap to a 
considerable extent.  For  n = 3, c~ is positive and drops 
rather  rapidly for large U(6); moreover the value of 
a(3) for U(6) > 4 is of the same order as the corres- 
ponding absolute value of a(2), the curve for which is 
identical with tha t  for diffraction effects in a one- 
dimensional Fourier synthesis (cf. James, 1948). 
These considerations indicate the desirability of making 
n ~ 3; combining this with the previously obtained 
condition for a unique solution, namely n > 3, we obtain 
n = 3. This then is the optimum value of n. 

4. Exponent ia l  f o r m  of we ight ing  funct ion 

We can now consider the exponential  forms yJ = 
exp [ -2a /d ]  and v 2 = exp [-a2/d2], where a is a 
constant. These are particularly interesting because 
(1) the first form approximates closely to the variation 
of f over a large range of sin 0/2 and atomic number, 
while the second is often used as a converging factor, 
and (2) these forms do not involve any trouble with 
divergent integrals. In  one dimension and with yJ = 

exp [ -2a /d ]  = exp [ -2(h/a)a] ,  we have 

(S:u2 exp [ - A  u] du) , (12) 

which is evaluated numerically for the present purpose. 
The expression with ~ = exp [-a~/d 2] is very similar. 
Curves for ~/against U and against 2~ (H/a)s(x) have 
been drawn for these functions with two representative 
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8 - ~  - _ _ V,=~xp(-o-}.d') 
O" ~=exp(-2o'~d) 

o°: 1 . . . . . .  
°21 -_  . . . . .  }o-_-2ax; 

I , . '" . . . .  ,-'v ''" ----> 0"=0 
I ~ ~ ~..__6'.~.~ a 

U= 2 .~'-~" ~X~ 
(,,) 

0"8 

0"6' 

0"4 

0"2 

!- }° 

U~=2=H~.(x) 
(b) 

-- __ --~=exp(-¢~/d 2) 

.o'=4~x; 

Fig .  5. E f f i c i e n c y  of  c o n v e r g e n c e  c u r v e s  w i t h  e x p o n e n t i a l  w e i g h t i n g - f u n c t i o n s .  T h e  b e h a v i o u r  of  t h e  c u r v e s  w i t h  
g r e a t e r  a n d  less  t h a n  t h e  c r i t i ca l  v a l u e ,  -- ,  3cSxi, i s  s t r i k i n g l y  d i f f e r e n t .  

values of a, name ly  2~x~, 45x~ (Figs. 5(a) and 5(b)). 
The curves show the same general  characterist ics as 
those for the power law, the critical value of a being 
approx imate ly  3(9xi; unique solutions are obtained 
when a > 3~x,- and mul t ip le  solutions occur when 
a < 3~x~. The unfor tuna te  feature is tha t  the critical 
value of a is a mul t iple  of the unknown 6xi; t ha t  this  
mus t  be so follows immedia te ly  from equat ion (12). 
Thus if we use these exponent ia l  forms, we cannot  
weight the reflexions properly un t i l  we know (~xi, 
and therefore the  actual  atomic coordinates! Fur ther ,  
the  exponent ia l  law has the  d isadvantage  tha t  unique 
r/-U curves, independent  of 6xi, etc., cannot  be 
drawn. 

We are therefore left wi th  the power law as the most  
sat isfactory form of weighting funct ion so far  con- 
sidered. 

5.  T h e  t w o - d i m e n s i o n a l  c a s e  

In  the two-dimensional  case, 

to = ~ W  2 • 
k 

If the summat ion  contains enough terms, we can to a 
sufficient degree of approx imat ion  again replace the 
sum by  an  integral  and  write 

f+ K(w(hk))~dk . 
to = - -K  

I t  is reasonable to assume tha t  the  weight is a funct ion 
of the  distance of the reciprocal point  (hk) from the 
origin in reciprocal space. Calling this  distance r, 
we have  

r 2 =  (h/a)9+(k/b) ~ = (l/d) ~. . 

If  a power law is val id  for the  weight, w 2 = r -n, so 
tha t  

to ~ (h'./a~.+,~,~./b~.)-~,ek. 
- K  

The value of to depends on the  par t icular  shape of 
the  region of integration.  Let  us assume tha t  the  

region of a plane over which the  integrat ion is tak ing  
place is bounded by  a circle round the origin and  of 
a radius R, so tha t  the l imits  of the integral  are 

K = + b l / { R 2 - ( h / a ) 2 } .  

The efficiency integral  is now more difficult  to solve, 
and no general  method  of solution for the power series 
could be found. However,  from a solution of several 
special instances, i t  appears t ha t  the series has the 
following form 

1 3 4 - n  
_ _  U 2 

~2(n) = 1 3 ! 4 6 - n  

1 3 . 5 4 - n  1 3 . 5 . 7  4 - n  
_ _ _ _  V 4 

~ 5 ! 4 . 6 8 - n  7 ! 4 . 6 . 8 1 0 - n  U 6 + ' ' "  ' 

val id  for n < 4. In  this  series, U = 2 z H 6 x j a  = 
2~R6xi ,  .R being the  radius of the region over which 
the  summat ion  takes place. For  n > 4, in order to 
avoid s ingular i ty  at  u = 0, the in tegrat ion should be 
spli t  as in the one-dimensional  case. The results are 
s imilar  to those in three dimensions and  therefore they  
will be discussed along with the three-dimensional  case 
below. 

6.  T h e  t h r e e - d i m e n s i o n a l  c a s e  

I n  three dimensions, 

to = 2;  z ( w ( h k @ .  
k l 

We introduce again the distance from the origin as 

r2 = (h/a)9+(k/b)2+(1/c) 2 = (l/d) ~ , 

and  another  var iable  Q, defined by  

~ 2 =  (k/b)2+(1/c)2, 
and obta in  

o 0 

W i t h  U as defined previously,  the  general  solution is 



348 W E I G H T I N G  OF T H E  L E A S T - S Q U A R E S  AND S T E E P E S T - D E S C E N T S  M E T H O D S  

% 

0"8 

0"6 

0"~," 

0"2 

0"8- 

0"5' 

~ o.~. 

n = 2 ~  0"2' 

U= 2 ~--~- Sx 

n 3 
/ / /  

i 

(a) (b) 

~ ~ 0  

T 
6 

Fig. 6. Curves for Ua, the  efficiency of convergence for a three-dimensional  summa¢ion.  The curve for  
the optimum value (5) of n is ve ry  close to the  corresponding curve for ~z. 

( U~- ._  u~-.) u~+ l clu 3 ( 5 - n )  Up-1 
Gp = " = (n ¢: 2) ,  

I (U~-._u~-n) u~du (p+2) ( 4 + p - n )  

and we have 

I 3 ( 5 - n )  1 3 ( 5 - n )  U4 - 
r/a(n ) = 1  3 ! 5 ( 7 - n )  U ~ 5 ! 7  ( 9 - n )  " " '  

In  three dimensions, it  is again easy to evaluate 
~a(n) for integral values of n, and in the most im- 
por tant  range we have 

9 
W(2) = ~]-~ ( S i ( U ) - s i n  U) n = 2 ,  

6 
~3 (3) = ~-~ ( U -  sin U) 

~a(4 ) --2-~3 (Ucos U - s i n  U+U~Si(U)) n = 4 

1 
and ~a(5) = 71(3 ) -3  log ~b+l  

For n----5, the integrations are split as in the one- 
dimensional case. As n increases, the efficiency in- 
creasingly depends on the lower limit of the summa- 
tion, and therefore on ~b. Since the formulae are very 
similar to the one-dimensional ones, they  need not  be 
discussed in detail. Certain important  features of the 

two-, and three-~mensional cases, however, deserve 
notice (cf. Figs. 6(a) and (b), in which curves for ~z(n) 
with n -- 2 to n = 5 are shown). 

When the results calculated for different number of 
dimensions are represented graphically, in all cases 
when n is small, the efficiency ~ is an oscillating func- 
tion. As n increases, the oscillations decrease in 
amplitude until  they  are completely damped and the 
displacement ~x~ becomes a single-valued function of 
s(xi). If a single-valued solution is desired, we should 
choose n _  3 in one dimension, n ~ 4 in two'ciimen- 

sions and n _  5 in three dimensions. (This increase 
of n with the number of dimensions can be readily 
understood; it  compensates for the increased relative 
number of high-order reflexions entering into the 
summations.) Combining this result with considera- 
tions of overlapping peaks, as for the one-dimensional 
case, we obtain n = 3, 4 and 5, respectively, as the 
optimum values of the exponent. 

7. Prac t i ca l  a p p l i c a t i o n  to the  m o d i f i e d  s t e e p e s t -  
d e s c e n t s  c a l c u l a t i o n  

The efficiency formulae derived in the preceding section 
can be used in practice either to find corrections to 
the values of e when a weighting function of a given 
n is used, or to restrict the limits of summation when 
it  is found tha t  the inclusion of high-index terms is 
detrimental  to the convergence. 

To simplify previous discussion, the vector e was 
taken parallel to the x axis.. Now it is necessary to 
transform our results back to general co-ordinates and 
the efficiency is to be calculated on the basis of the 
absolute length 

After rewriting the efficiency formulae, i t  is possible 
to prepare graphs or tables of ~(2gR[e[), or preferably 
its reciprocal, as functions of 2gR[el. The corrected 
atomic shifts can then be obtained from the equations 

~x~ = ~(x~)/v, 
~y~ = ~(y~) /v  , 

~z~ = ~(z~) /~  , 

the same value of ~ being used for all coordinates of 
one atom. 

I t  is to be noted that ,  although curves for ~ are 
given only for the one- and three-dimensional cases, 
corresponding curves are close enough in the practically 
useful range to enable the curves for the two-dimen- 
sional case to be got by  interpolation. 

Also,  i t  can be shown tha t  the above results for 
hold substantially unaltered when the lattice is non- 
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orthogonal, provided tha t  e(x), e(y), e(z), are now re- 
placed by  el, e~, ca, obtained by solution of the fol- 
lowing equations 

e(x) = e l + e ~  cos 7 + e 3  cos f l ,  

e(y) = el cos 7+eg+ea cos ~ ,  
e(z) = e~ cos f l + ~  cos ~ + e a ,  

c~, fl, 7, being the inter-axial  angles (cf. Booth, 
1946a, b), with corresponding equations for the two- 
dimensional case. 

8. Conclusions  

(a) I t  has been shown tha t  the efficiency of con- 
vergence of the modified steepest-descents and the 
least-squares methods depends on the form of weight- 
ing function adopted. From three possible forms of 
weighting function discussed, only functions of a type 

w ~ = d  ~, i.e. W 2=(1/ f2)d  '~, 

where d is the inter-planar spacing for the reflexion 
concerned, are found to be effective in giving single- 
valued solutions. The optimum value of n is found to 
be 3, 4 and 5, for one-, two- and three-dimensional 
summations, respectively. When n is smaller than the 
optimum value, the efficiency oscillates and there are 
multiple solutions in certain ranges of the shifts, e. 
However, the solution is always unique when n is 
greater than  or equal to the optimum value. This 
apparent ly corresponds to the spreading of the atomic 
peaks of the Cochran theory so tha t  they  extend over 
the whole unit  cell, as is shown by  considering in 
detail the overlap of atomic peaks. For n greater than  
the optimum value, the overlap between distant atoms 
becomes excessive. 

(b) The value of ~ obtained from the appropriate 
curve can be used to correct the calculated ~'s and 
thus speed up convergence. Before the results can be 
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confidently applied in practice, other important  effects 
such as uncertainty of signs, experimental errors, etc., 
need to be incorporated into the theory. I t  is hoped 
to do this in a later paper. 

(c) Finally, it is pert inent  to emphasize tha t  the 
particular efficiency of convergence considered above 
is peculiar to the least-squares and steepest-descents 
methods, and does not have a counterpart  in the 
Fourier-synthesis method;  this is easily seen by noting 
that ,  under the conditions stipulated, namely, 
knowledge of the signs of the observed E's, U----1 
for the Fourier synthesis, apart  from diffraction 
effects due to series termination. Cochran (1948b) 
and Cruickshank (1950) show tha t  the least-squares 
solution is identical with tha t  given by a modified 
Fourier-synthesis, but  this conclusion refers to the 
ult imate solution and not to the rate of convergence 
of successive approximations. Cruickshank, in fact, 
notes tha t  in a typical case the rates are significantly 
different for ~ > 0.10/~. The special significance of 
the present calculations for V is that ,  after this U has 
been corrected for, the least-squares and Fourier- 
synthesis methods become comparable (or approxi- 
mately  so) in so far as concerns the effect of incorrect 
signs, etc., on the over-all effmiency of convergence. 

We are indebted to Dr H. Lipson, Dr I. G. Edmunds 
and Prof. J. M. Robertson for their interest. Par t  of 
the above work was made possible by a grant from the 
Government of Pakistan. 
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